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Abstract

In this work, we present a disposal strategy for Sun-Earth LPO missions, based on stable heliocentric
graveyard trajectories that do not approach the Earth-Moon system in the long term. Previous studies
analyzed the possibility of reentering to the Earth, impacting on the Moon or move to a heliocentric graveyard
orbit. The novelty of our work is that we take advantage of the mutual configuration observed in nature
between Janus and Epimetheus, two moons of Saturn, to design a heliocentric graveyard strategy that is
stable in the long term and does not require additional operations to stay away from the Earth. Rather than
lowering the energy of the spacecraft (or increasing the Jacobi constant) to close the zero-velocity curves,
the configuration needs an energy increase to reach a trajectory that encompasses L3, L4 and L5. Taking
advantage of the theory developed to explain the motion of Janus and Epimetheus, we design horseshoe-
shaped orbits, that satisfy the conditions required to be stable under the dominant orbital perturbations. The
stability of these disposal orbits is verified considering a n−body problem with solar radiation pressure. The
transfer required to move from a given L2 LPO mission to such orbits can be designed exploiting the unstable
invariant manifold of the L2 orbit.

Keywords: Libration Point Orbit mission, Co-orbital motion, End-of-life, Disposal Orbit, Space Situational
Awareness

1. Introduction

Libration Point Orbits (LPO) are exploited in the
Sun-Earth system since decades to place space obser-
vatories for solar and astrophysics purposes. Though
not considered protected regions, there exist stud-
ies funded by ESA and NASA [1, 2, 3] focusing on
the design of end-of-life disposal practices. They are
motivated by the increasing awareness of considering
orbital regions as unique resources to be preserved
for the operational and the planned missions and
for the new generations. As far as we know, official
guidelines do not exist for Sun-Earth LPO missions,
while for Earth-Moon LPO missions a preliminary
discussion has started, in view of the forthcoming
operations in the cislunar environment [4].

In this work, we propose a disposal strategy for
Sun-Earth LPO missions1, based on stable heliocen-
tric graveyard trajectories that do not approach the

1in what follows, denoted as just LPO missions.

Earth-Moon system in the long term. Previous stud-
ies analyzed the possibility of reentering to the Earth
[1, 2, 5, 6, 7], impacting on the Moon [1, 2, 8] or move
to a heliocentric graveyard orbit [1, 2, 3, 9]. As re-
gards to the third option, that is actually the only
one implemented so far (see, e.g., [10, 11]), the idea
is to move the spacecraft beyond the zero-velocity
curves (ZVC), interior to L1 or exterior to L2 (de-
pending on the operational orbit), and eventually
apply an impulsive maneuver2 to close the ZVC to
prevent the spacecraft from returning to the Earth’s
neighborhood. In this case, Monte Carlo simulations
are usually required to evaluate the risk of an Earth’s
return in the long term (about 100 years), by con-
sidering a full dynamics that accounts for the main
orbital perturbations [14]. Another possibility is to
take advantage of the natural third-body perturba-
tion due to the Earth to increase continuously the

2or exploit the solar radiation pressure to the same end
[12, 13].
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Figure 1: The synodic reference system for the CR3BP and the equilibrium points (right).

Minimum Orbit Intersection Distance [15].
The novelty of this work is that we take advan-

tage of the mutual configuration observed in nature
between Janus and Epimetheus [16], two moons that
orbit Saturn on horseshoe-shaped trajectories, to de-
sign a heliocentric graveyard strategy that is stable
in the long term and does not require additional op-
erations to stay away from the Earth. Rather than
lowering the energy of the spacecraft (or increasing
the Jacobi constant) to close the ZVC, the configu-
ration needs an energy increase to reach a trajectory
that encompasses L3, L4 and L5.

The graveyard options are chosen following the
theoretical findings in [16] and [17] and tested in a
more comprehensive dynamics that accounts for the
solar radiation pressure effect and the gravitational
attractions of the planets and the Moon.

In the last part of the work, we design the trans-
fers from planar Lyapunov orbits at L2 to a selected
horseshoe orbits, in terms of stability and energy
level. The end-of-life transfer is computed by means
of the unstable invariant manifold corresponding to
the L2 orbit.

2. The Circular Restricted Three-Body
Problem

Libration Point Orbits are designed in the con-
text of the Circular Restricted Three-Body Problem
(CR3BP) [18], the model that studies the behav-
ior of a particle with negligible mass moving in the
gravitational field of two primaries of massesm1 and
m2, each one revolving around their common cen-
ter of mass on circular orbits. In this work, m1 is
the Sun and m2 the Earth–Moon barycenter. To re-

move time dependence from the equations of motion,
it is usually introduced a synodic reference system
{O, x, y, z}, that rotates around the z-axis with con-
stant angular velocity equal to the mean motion of
the primaries. The origin of the reference frame is
set at the barycenter of the system and the x-axis
as the line joining the primaries, oriented in the di-
rection of the smallest primary. In this way m1 and
m2 result to be fixed on the x−axis.

The units are chosen to set the gravitational con-
stant, the sum of the masses of the primaries, the
distance between them and the modulus of the an-
gular velocity of the rotating frame equal to 1. In
the Sun–Earth+Moon system, the unit of distance
equals 1 AU = 1.49597870691×108 km and the di-
mensionless mass of the Earth+Moon barycenter is
µ = m2

m1+m2
= 3.0404234× 10−6. As such, the most

massive body is located at (−µ, 0, 0), the second one
at (1− µ, 0, 0) (see Fig. 1) and the equations of mo-
tion read

ẍ− 2ẏ = x− (1− µ)

r31
(x+ µ)− µ

r32
(x− 1 + µ),

ÿ + 2ẋ = y − (1− µ)

r31
y − µ

r32
y, (1)

z̈ = − (1− µ)

r31
z − µ

r32
z,

where r1 = [(x+ µ)2 + y2 + z2]
1
2 and r2 = [(x− 1 +

µ)2+y2+z2]
1
2 are the distances between the particle

and the two primaries. This system of equations
admits a first integral – the Jacobi integral – given
by

(x2+y2)+2
1− µ
r1

+2
µ

r2
+(1−µ)µ−

(
ẋ2 + ẏ2 + ż2

)
= C,
(2)
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where C is the so called Jacobi constant. In what
follows, (x2 + y2) + 2 1−µ

r1
+ 2 µ

r2
+ (1 − µ)µ will be

denoted as 2Ω(x, y, z).
In the synodic reference system, there exist five

equilibrium points (see Fig. 1), whose elliptic com-
ponent defines periodic and quasi-periodic orbits in
their neighborhood, namely, the Libration Point Or-
bits, (see, for instance, [19]). If Ci (i = 1, . . . , 5)
denotes the value of the Jacobi constant at the Li
equilibrium point, the following holds:

C1 > C2 > C3 > C4 = C5 = 3.

In Tab. 1 the values of C1, C2, C3 for the Sun-Earth
system are given.

C1 C2 C3
3.00090098 3.00089693 3.00000608

Table 1: Values of C1, C2, C3 for the Sun-Earth sys-
tem.

Depending on the value of the Jacobi constant, it is
possible to know where the particle can move in the
configuration space. According to (2), the regions
where the motion is forbidden are characterized by
2Ω(x, y, z)−C < 0 and their boundaries are the zero-
velocity surfaces (zero-velocity curves in the planar
case).

The collinear points L1, L2, L3 are also charac-
terized by one hyperbolic component, and thus sta-
ble and unstable invariant manifolds arise from the
corresponding point and LPO. By definition, the
energy, or Jacobi constant associated with the hy-
perbolic invariant manifolds stemming from the give
equilibrium point is the one given in Tab. 1.

2.1 L2 Lyapunov orbits

We assume that the operational orbit is a planar
Lyapunov orbit at L2. In Fig. 2, we show some ex-
amples. The planar assumption is taken to simplify
the analysis, and focus on the role played by the en-
ergy level to design the transfer and for the choice of
the final disposal orbit (together with the long-term
stability, see Sec. 3.). We recall that planar Lya-
punov orbits can be computed starting from a linear
approximation in the neighborhood of L2, consid-
ering as basic frequency one the center component
of the equilibrium point. The whole family is then
found by continuation. The family has the same dy-
namical behavior as the equilibrium point, that is,
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Figure 2: Planar Lyapunov orbits in the neighbor-
hood of L2. For the orbits shown C ∈ [3.00017641 :
3.00073635]

there exists a stable invariant and an unstable in-
variant manifold stemming from the given periodic
orbit. We will take advantage to these objects to
design the transfer from the operational LPO to the
horseshoe disposal orbit.

3. Co-orbital motion and horseshoe-shaped
trajectories

3.1 On the Saturn-Janus-Epimetheus system

In the framework of the Three-Body Problem (3BP),
the co-orbital motion is associated with trajectories
in 1:1 mean-motion resonance. In other words, the
two smallest bodies share the same orbital period
around a more massive primary.

A major example in the Solar System is given
by the Trojan asteroids harboured by Jupiter in the
neighbourhood of L4 and L5. Another astonishing
configuration is given by Janus and Epimetheus, two
small moons that orbit Saturn on quasi-coplanar and
quasi-circular trajectories whose radii are only 50
km apart, which is less than their respective diam-
eters. Since their orbital period is slightly different,
they experience a relatively close approach every 4
years, which leads to a swapping of the orbits: the
outer moon becomes the inner one and vice-versa.
As Fig. 3 shows, this behavior generates horseshoe-
shaped trajectories depicted in an appropriate rotat-
ing frame.
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Figure 3: Schematic representation of the Saturn-
Janus-Epimetheus trajectories which are depicted
in an appropriate rotating frame that rotates with
the moons’ average mean-motion. They describe a
horseshoe shape. It takes about 4 years between
each orbital exchange and about 8 years for Janus
and Epimetheus to cover all their horseshoe-shaped
trajectories (which corresponds to 4000 revolutions
around Saturn).

This surprising dynamics was confirmed by Voy-
ager 1’s flyby in 1981 [20] and observed over the last
decades, especially by the Cassini mission. More-
over, analytical theories [21, 22] as well as numerical
investigations [23, 24] provided indications on the
long-time stability of the “horseshoe motion”.

Recently, a rigorous theorem proves the exis-
tence of quasi-periodic horseshoe-shaped trajectories
in the 3BP, thanks to KAM theory [16]. It confirms
that these heliocentric trajectories, even experienc-
ing close approaches with the planet, can be stable
in the long term, and thus, that they can be good
candidates for a heliocentric graveyard strategy.

This stability result is based on an integrable
approximation obtained by a 1:1-resonant normal
form, usually known as averaged problem. In the fol-
lowing and without too much detail, we explain how
this theory can be applied to the planar CR3BP for
a Sun-Earth system in order to define boundaries on
the domain of horseshoe motion. For the complete
theory, we refer the reader to [17].

3.2 The domain of horseshoe motion in the aver-
aged problem

The averaged problem in the case of 1:1 mean-
motion resonance is a perturbative treatment of the
Restricted 3BP which consider µ as a small param-
eter. In such case, the Hamiltonian function of the
planar CR3BP given in the heliocentric reference
frame, can be split in two terms: an integrable part
which corresponds to the unperturbed Kepler mo-
tion of the particle, while the other one models the
perturbative terms that depend on µ: the gravita-
tional influence of the Earth, the acceleration of the
heliocentric frame, and a term associated with our
choice of the Kepler problem. In that framework, the
motion of the particle is given by the heliocentric
orbital elements (a, e, ω, λ), respectively the semi-
major axis, the eccentricity, the argument of peri-
aster and the mean longitude. Likewise, the circular
orbit of the planet can be described by the semi-
major axis a′ = 1 AU and the mean longitude λ′
with a mean-motion λ̇ = 1. At first order, λ circu-
lates with a mean-motion equal to

√
a
−3 while a, e

and ω remains fixed. However, in the long term, the
perturbative terms of the Hamiltonian will generate
slow variations a, e and ω.

The co-orbital motion is a type of solutions lo-
cated on a particular region of the phase space for
which a ' a′ = 1 AU. Moreover, it is characterized
by a resonant angle θ = λ−λ′ which oscillates about
some particular values. For instance, a horseshoe-
shaped orbit is characterized by θ that features very
large oscillations centered on 180◦. In this region of
the phase space, the timescales are separated: λ′ is
a “fast” angle, while θ and ω undergoes “slow” vari-
ations. A classical way to exploit this feature is to
replace the original Hamiltonian by another one for
which the fast oscillations have been removed of the
perturbative terms. For that purpose, an averaging
over the period of revolution of the Earth is per-
formed on the Hamiltonian after the introduction of
the resonant angle θ. This process defines the aver-
aged problem in the case of 1:1 mean-motion reso-
nance.

In the circular-planar case, another reduction is
possible: the averaged Hamiltonian does not depend
on ω and the Poincaré variable Γ =

√
a(1−

√
1− e2)

is a conserved quantity. As a consequence, for a fixed
Γ, the averaged Hamiltonian is integrable and phase
portraits obtained for various values of Γ allow to
understand the global dynamics of the 1:1 mean-
motion resonance.
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Fig. 4 displays the “map” of the co-orbital motion
for the Sun-Earth system. It is a synthetic represen-
tation of the phase space associated with the section
a = 1 and for which the boundaries of the horse-
shoe motion are neatly defined. For instance, the
domain of horseshoe motion is bounded by the black
thick curve which illustrates the collision with the

planet, and by the red thick curve which plots the
cross section of the separatrices that originate from
L3 and from the Lyapunov family of L3. However,
since it has been proved that the averaged problem
is a reliable approximation of the R3BP as long as
the solutions are located outside the Hill’s sphere of
the Earth (see [17]), (θ, e) must be chosen below the
green thick curve, which represents a minimal dis-
tance between the Earth and the particle equals to
a Hill’s radius (denoted RH = (µ/3)1/3 on Fig. 4 and
Fig. 5).

In a more practical way, an initial condition
(a, e, ω, λ), such that a = 1, λ = θ + λ′ with (θ, e)
that belongs to the red region and ω, λ′ ∈ T arbitrar-
ily chosen, will provide a quasi-periodic horseshoe-
shaped orbit in the averaged problem which approx-
imates, for a finite time, the motion of a particle
that starts at the same initial condition in the pla-
nar R3BP. More precisely, transitions to another
co-orbital motion or escapes from the 1:1 mean-
motion resonance can not occur at least during a
time T =

√
∆/RH

3
where ∆ corresponds to the

minimal distance with respect to the Earth. For
instance, it ensures that a trajectory whose initial
condition is located in the red region and below the
dashed line corresponding to 10RH remains in horse-
shoe motion for at least 30 years.

A disposal orbit requires long-term stability
(centuries) and also to experience relatively close
approaches with the Earth in order to be able to
construct a transfer with reasonable costs. In this
framework, the theoretical result of stability restricts
the choice to initial conditions located at a greater
distance than 25 Hill’s radii. Although the theory
cannot ensure it, some horseshoe trajectories can be
stable for very long term for closest approaches. To
go further, we realize a preliminary investigation of
stable horseshoe-shaped trajectories in the CR3BP.
Thus, for (θ, e) chosen with a minimal distance ∆
smaller than 6 Hill’s radii the two following initial
conditions can be identified with an important time
of stability:

• HS1: a = 1, e = 0, θ = 3.4925◦, ω = −θ

• HS2: a = 1, e = 0.05, θ = 9◦, ω = −θ

whose respective Jacobi constant are equal to C =
3.00009066 and C = 2.99752123. HS1 and HS2 were
propagated in the CRTBP for respectively 200 years
and 10000 years and Fig. 6 shows that the two solu-
tions correspond to stable horseshoe-shaped trajec-
tories.
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Figure 6: Left: the orbits obtained propagating the CR3BP for 200 years. Right: the orbits obtained propa-
gating the CR3BP for 10000 years Top: Initial condition HS1. Bottom: Initial condition HS2.
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4. Full dynamics

The final disposal orbit is validated in a full dynam-
ical model, whose equations of motion are written in
the geocentric equatorial reference system, denoted
as {O, ξ, η, ζ}, with physical units of distance, time
and mass (AU, day and kg). The dynamical effects
considered are the main perturbations that might
act on LPO and the graveyard orbit [5, 25], that
is, the gravitational acceleration due to Sun, Earth,
Moon and the planets and the solar radiation pres-
sure. Atmospheric drag and geopotential are not
considered because of the distance of the graveyard
orbit with respect to the Earth.

The gravitational acceleration (subscript g) ex-
erted on the spacecraft by Sun, Moon and the planet
is modeled as

ξ̈g = −
11∑
p=1

Gmp
(xE − xp + ξ)

r3Ep
− ẍE ,

η̈g = −
11∑
p=1

Gmp
(yE − yp + η)

r3Ep
− ÿE , (3)

ζ̈g = −
11∑
p=1

Gmp
(zE − zp + ζ)

r3Ep
− z̈E ,

where

• (xp, yp, zp, ẋp, ẏp, żp) is the state vector in the
equatorial reference system centered at the So-
lar System barycenter of the body P of massmp

and it is evaluated, at a given instant of time,
from the JPL ephemeris DE405 [26];

• (xE , yE , zE , ẋE , ẏE , żE) is the Earth’s state vec-
tor in the equatorial reference system centered
at the Solar System barycenter, and it is also
given by the JPL ephemeris DE405 at each in-
stant of time;

• rEp =
√

(xE − xp + ξ)2 + (yE − yp + η)2 + (zE − zp + ζ)2.

The effect due to the solar radiation pressure
(subscript SRP ) follows the so-called cannonball
model, and can be seen as the effect due to a residual
mass of the Sun, namely,

ξ̈SRP = −CRP̄ a2�
A

m

(xE − xS + ξ)

r3ES

η̈SRP = −CRP̄ a2�
A

m

(yE − yS + η)

r3ES
, (4)

ζ̈SRP = −CRP̄ a2�
A

m

(zE − zS + ζ)

r3ES
,

where CR is the reflectivity coefficient, P̄ = 4.51 ×
10−6 N/m2 is the mean solar radiation pressure at
1 AU, a� = 1 AU is the mean distance between the
Sun and the Earth, A/m is the area-to-mass ratio
and the subscript S denotes the Sun. For the simu-
lations, we assume CRA/m = 0.02 m2/kg.

4.1 Examples

In Fig. 7, we show two examples of propagation
starting from J2000 up to 200 years, assuming the
dynamical model just introduced. We have consid-
ered the two different initial conditions denoted HS1
and HS2, as explained in Sec. 3.. The same figure
shows that the distance to the Earth never drops
below 2 Hill’s radii.

A more systematic study on the long-term be-
havior of the initial conditions that can be actually
exploited for the disposal strategy (see also the con-
siderations in the next section) will be performed in
the future.

5. The transfer

In Fig. 8, we show one branch of the unstable man-
ifold associated with two different L2 Lyapunov or-
bits (i.e., different values of C), propagated up to 1
year, the corresponding ZVC and two possible dis-
posal horseshoe orbits, namely, one very close to HS1
and HS2.

The figure shows clearly how the geometry of
the manifold, but also the energy levels correspond-
ing to the LPO and the HS, play a key role in the
design of the transfer. In particular, for high values
of C of the LPO and the highest possible value of
C for the HS (top left panel), the HS lies inside the
ZVC, and thus the transfer cannot be achieved. As
long as the Jacobi constant C of the LPO decreases,
the corresponding ZVC shrinks and an intersection
in position can be found (bottom left panel). By
considering a more eccentric HS (right panels) an
intersection in position can be easily found, but the
gap between the two energy levels might be too ex-
pensive to fill.

Starting from the definition of the Jacobi con-
stant, Eq. (2), and assuming that the given mani-
fold and HS intersect in position, the minimum im-
pulsive maneuver is a tangent insertion into the HS
(see, e.g., [27]), such that

∆v =
√
v2man + v2HS − 2vmanvHS , (5)
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Figure 7: Left: the orbits obtained propagating the CR3BP for 200 years (green) considering as initial condition
the one given by the averaged model and the ones obtained propagating the full dynamical model for 200 years
(yellow). Right: the distance with respect to the Earth as a function of time, computed with the full dynamical
model. Top: Initial condition HS1. Bottom: Initial condition HS2.
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Figure 8: One of the branch of the unstable invariant manifold of a given L2 Lyapunov orbit (cyan), the ZVC
(red) for the corresponding C and one possible stable disposal horseshoe orbit. Left: C = 3.00073635. Right:
C = 3.00029812. Top: Initial condition HS1. Bottom: Initial condition HS2.
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where vman =
√

2Ω(xHS , yHS , zHS)− Cman and
vHS =

√
2Ω(xHS , yHS , zHS)− CHS . In Fig. 9, we

show the minimum cost obtained to move to the HS
orbit with the highest possible value of Jacobi con-
stant, C = 3.00010012. Following the study [1] and
the actual disposal plan implemented by Herschel
[10], we can assume that there might exist LPO mis-
sions that can spend up to 200 m/s for the disposal
phase. Assuming this value as the maximum avail-
able ∆v−budget, it means that the operational LPO
must have a Jacobi constant lower than C ∼= 3.0004.
For a real three-dimensional mission, a possible way
to meet this requirement and satisfy also communi-
cation constraints (i.e., not considering an orbit with
a too large out-of-plane z−amplitude) is to consider
a Lissajous orbit, to play with the in-plane and the
out-of-plane amplitudes.
In the same figure, it is possible to notice a cusp
associated with C ≈ 3.0001. In this case, in Eq. (5)
the contribution given by v2man + v2HS and the one
corresponding to 2vmanvHS cancel out. The value
of C where the cusp may arise depends on the value
of C of the HS target orbit.

Other options of transfer can consider to split
the maneuver in two stages, when the manifold and
the HS do no intersect in position, or the usage of
low-thrust propulsion as done in [28]. Future work
includes a systematic study on the possible trans-
fers that can be designed. The authors in [28] al-
ready paved the way in this direction, but a further
detailed investigation is needed.

In Fig. 10, we show an example of transfer that
cost about 140 m/s from a L2 Lyapunov orbit with
C = 3.00025095 to the HS orbit with the highest
possible value of Jacobi constant, C = 3.00010012.

6. Conclusions

This work presents a novel disposal option for Libra-
tion Point Orbits missions in the Sun-Earth system,
inspired by the natural real motion of two moons of
Saturn. Beyond the concrete advantages offered by
the horseshoe orbits, the study also aims at showing
how a robust analytical understanding of the dynam-
ics is key to provide an aware solution of practical
problems, in terms of numerical cost and global view.
From the one hand, the perturbative treatment of
the CR3BP considered shows where the solutions
of interest can be found, without implementing ex-
pensive numerical simulations. On the other hand,
as also already stated by various investigations in
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Figure 9: Estimate of the cost required to move from
a LPO characterized by C to the horseshoe orbit with
the highest possible value of Jacobi constant, C =
3.00010012.

the field, the end-of-life phase of a mission must be
planned in advance and the mission design must take
it into account. In the specific case considered here,
this means to choose the size (and thus the energy)
of the operational LPO also depending on the dis-
posal strategy. Finally, celestial mechanics lays the
foundation of both space engineering and planetary
sciences and the two disciplines must learn more and
more to interact and help each other.
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